Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 8 of 8
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
The aim of the present invention is to develop a modular scintigraphic device, with high spatial resolution, capable of creating investigation areas of various shapes and sizes, of compact form and of being used in different types of applications.
The present invention relates to a gamma camera for intracavitary use, which is widely used in the field of radio-guided surgery (intra-operative and laparoscopic and robotic-assisted) for the localisation of lymph nodes and tumours and/or other pathologies. The aim of the present invention is to make available an intraoperative tool able to overcome the drawbacks of the present known art.
Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit, by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.
Health360 is a software framework for building cloud platforms to monitor the health of subjects recruited in clinical trials, residents of social housing or athletes in sports teams. The framework is based on interconnected and configurable modules to implement platforms that meet specific needs while maintaining a high level of usability.
NIRS is a non-invasive technique for the human brain cortex imaging based on the measurement of the NIR light emitted by suitable optical sources placed on the patient head and backdiffused to the surface after passing through the brain tissues. NIRS monitors the percentage of oxygenated and reduced hemoglobin in the blood, and it allows the real time functional imaging of the brain cortex also in tomographic mode (Diffuse Optical Tomography - DOT).
The proposing team that works at CNR ISTEC has recently patented a technology for the production of the Smart Polycrystals (SP), i.e. transparent YAG-based ceramic polycrystals (Y3Al5O12) variably doped with rare earths ions and transition metals ions. The SPs solve the problem of the reduction of the efficiency in the solid state laser systems caused by the inhomogeneous heating of the single crystals during the emission process.