A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 21
The development of genome editing tools has revolutionized the way we think and deal with genetics. The use of Cas9 or its variants allows modifications of specific sites in the human genome by inducing deletions and insertions in a more or less controlled way. In recent years, a new class of tools for genome editing has emerged: the base editors (BE), which result from the fusion of a modified Cas9, which serves to direct the BE to the target, and an active deaminase acting on the DNA, which mediates the C> T or A> G editing.
Aptamers, short structured single-stranded oligonucleotides binding at high affinity to a given target protein, are selected from large combinatorial libraries through repeated cycles of incubation of the library with the target, recovery and amplification of target-bound oligonucleotides (SELEX technology, Systematic Evolution of Ligands by EXponential enrichment). SELEX can be applied to select aptamers against a known target protein or against a specific cell phenotype, without any prior knowledge of the specific target, leading to new biomarkers discovery.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.
The innovative manipulation device - micro-gripper - allows the gripping by vacuum of micro-components and integrates a novel system to support their release. The manipulation of millimetric and sub-millimetric components can present several issues, often negligible at the macro-scale.
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.
In our recent publication we identified a group of bladder cancer-specific ncRNA, called T-UCRs that are the most up-regulated in bladder cancer patient samples compared with normal bladder urothelium.
The proposal concerns the development of the G.A.T.CD4 (Gliadin-activated CD4+ T cells) method which allows, in peripheral blood, the identification of CD4+ T lymphocytes reactive to toxic peptides of gliadin, the main gluten protein of cereals.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
The technology concerns planar optical antennas composed of thin metal films and dielectric materials for the efficient direction of the light emitted by light sources, such as fluorescent molecules and bio-markers. They consist of a reflector layer, adjacent to the substrate, and a director, semi-reflective, between which the emitter is positioned, integrated into a homogeneous dielectric layer.