Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 7 of 7

# Record card
154
Description

The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).

Thematic areas
Chemicals & Physics
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability
Energy and environmental sustainability / Waste management
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy production, transmission and conversion
Bioeconomy
# Record card
171
Description

B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Internet of Things
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Bioeconomy
Materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Materials / Composite and hybrid materials
Materials / Plastics, polymers
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Special chemicals
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy storage and transport
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Wearable technologies
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
# Record card
75
Description

A virtuous multi-step biorefinery platform to convert urban biowaste into valuable molecules, not disregarding renewable energy and digestate production. The strategy is based on the integration of a thermal pretreatment capable of significantly increasing the fraction of fermentable organic carbon, in order to furthermore change the status of the feedstock to become more suitable for production of a) high-value bio-based molecules, b) biomethane and c) hygienized digestate to be recycled as biofertilizer.

Thematic areas
Energy and environmental sustainability / Environmental engineering/technologies
Bioeconomy
Energy and environmental sustainability / Renewable sources
Chemicals & Physics / Organic substances
Energy and environmental sustainability / Energy production, transmission and conversion
Chemicals & Physics / Special chemicals
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Waste management
# Record card
61
Description

The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.

Thematic areas
Tourism, social sciences and cultural heritage / Archeometry
Energy and environmental sustainability / Safety and security
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Materials / Processes of production & treatment of materials
Health & Biotech / Smart Devices for Health and Wellness
Agrifood / Food quality & safety
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Cleaner use of fossil fuels
Tourism, social sciences and cultural heritage / Safety and security
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Energy and environmental sustainability / Environmental engineering/technologies
Additive and advanced industrial manufacturing / Process control and logistic
Energy and environmental sustainability / Sensory
ICT & Electronics / Electronics and microelectronics
Chemicals & Physics / Separation technologies
# Record card
58
Description

A distributed micro-cogeneration system has been developed for continuous and programmable autonomous production of thermal (between 25 and 70 kWth) and electrical (between 5 and 10 kWel) energy starting from heterogeneous biomasses.

Thematic areas
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy production, transmission and conversion
# Record card
7
Description

Uniform coverage with porous layers over extended surfaces is beneficial for many purposes. Depending on the nature/composition, thickness and interfaces of the layer, this kind of special coverage can assure pivotal properties such as transparency, bendability, high surface reactivity, intermixing capability. In the long list of desired porous materials, transparent oxides find application in the fields of Photovoltaics, Sensing, Photocatalysis, Water Purification and Splitting, Lithium Batteries and many more.

Thematic areas
Materials / Processes of production & treatment of materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Renewable sources
ICT & Electronics / Electronics and microelectronics
Energy and environmental sustainability / Energy production, transmission and conversion
Materials / Composite and hybrid materials
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Energy and environmental sustainability / Pollution treatment (air, soil, water)
# Record card
175
Description

The invention is a synthetic method to prepare colloidal nanomaterials of V-VI-VII semiconductors that do not contain toxic elements. This is the first method for the synthesis of mixed anion nanomaterials without toxic elements at large, which permitted to obtain, among others, bismuth chalcohalide nanocrystals that are arguably considered as one of main candidates to be the next big thing for light energy conversion.

Thematic areas
Materials
Materials / Processes of production & treatment of materials
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials / Semiconductors and Superconductors
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy production, transmission and conversion
ICT & Electronics
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Colours & dyes
Materials / Composite and hybrid materials
Materials / Optical materials