The proposed technology is based on the concept of Power-Over-Fibre (PoF), which involves the transmission of data and power over an optical fiber. This technology is suitable for applications where traditional copper cabling is impractical or undesirable. This is the case with pantographs, where there is a large potential difference between the catenary and the earth, and therefore any electrical contact must be avoided for safety reasons. Furthermore, pantographs operate in an environment with very high electromagnetic interference (EMI).
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 16 - 24 of 24
Quartz tuning forks are employed in scanning atomic force microscopy (AFM), as well as in some derived techniques, as high sensitivity detectors of interactions, of both conservative and dissipative kind, between the AFM nanometric probe and the investigated surface. However, the contributions of the two kinds of interaction result as convoluted in the sensor response, preventing fully quantitative measurements of the quantities of interest.
Plants can compete favorably with traditional expression systems (mammalian cells, yeasts or bacteria) to produce recombinant proteins/peptides of pharmaceutical/industrial/agrifood interest. This technology names “Plant Molecular Farming”. The CNR-IBBA research team offers the study of new strategies for the expression and optimization of recombinant proteins/peptides in plant-based systems (plant tissues, transgenic plants, plant cell culture). Our pipeline is based on the following modules:
The platform allows acquisition of data from commercial and custom sensors. By now, the system has been embedded in a wearable wristband where elastomeric based strain gauge have been integrated to detect fine hand/wrist/arm movements. The platform integrates inertial sensors (accelerometers, gyroscopes) to acquire more details about the subject movements. A sensor-fusion algorithm enables advanced movement recognition (gesture, 3D orientation). A machine-learning algorithm is in development to increase the performance of the platform.
The proposed technology deals with the development of active SERS (Surface Enhanced Raman Scattering) substrates ad hoc designed for diagnostics of cultural heritage. The substrates are prepared starting from common commercial 'polishing film' sheets (lapping optical fibers) showing an intrinsic roughness (48- 1000 nm) that favors the SERS effect. A pattern of silver or gold nanoparticles are deposited on these films through Pulsed Laser Deposition (PLD).
The instrument which is under development is a non-conventional portable Raman spectrometer. Raman spectrometers provide the molecular composition of the material surfaces, essential for their identification. The instrument peculiarity relies in the simultaneous acquisition of Raman spectra at imaged position and at different micrometric distances (offset) from the laser illumination area.
Recently, it has been demonstrated that Raman spectroscopy can play a fundamental role in assisting the work of the anatomopathologist by allowing classification of oncological samples with practically 100% accuracy in oncological diagnosis.
Environmental contamination is a prominent topic. Where the exposure to contaminants such as heavy metals (HMs) or polycyclic aromatic hydrocarbons (PAHs) is greater, the incidence of chronic degenerative diseases, such as oncologic, is increased. Scientific evidence reports that some phytochemicals are able to interact with HMs and PAHs by interfering with their cellular metabolism, inhibiting their cytotoxic mechanisms or helping to reduce tissue concentrations.
The substitution of fossil derived monomers in thermosetting resins is a very important point to look at to face environmental impact issues related with the use of traditional resins. The research group set up a protocol for the preparation of thermosetting resins starting from vegetable oils with different composition to substitute the petroleum-based monomers. The materials obtained in this way have a bio-based carbon content higher than 80%.