It enables a systemic and evolutionary development of people, organisations and territories by overcoming the criticality of traditional approaches, which get stuck because of rationalistic reductions in complexity, as well as lack of motivation. This responds to the social sustainability needs highlighted by the UN 2030 agenda. The methodology is based on 3 pillars:
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 91 - 105 of 175
We offer integrated tools for the acquisition, analysis, modelling and optimization of visitor flows in museums characterized by frequent congestion and/or complex geometries. Our intervention is divided into 4 phases:
1) Data acquisition related to the paths followed by visitors in the museum, number of visitors in the rooms, time of permanence, ... The acquisition is performed via a specific IoT system, smartphone app or manual counting.
Flow technologies for the synthesis of chemical intermediates have great potential at the industrial level and the synthesis of nanoparticles (NPs) can speed up the development of new products. In this context, we could find the technology for the synthesis of NPs. The NPs (Au, Ag, or Pt) are synthesized in a single step and are functionalized with polymeric stabilizers (such as PVP, PVA, PEG, or others) or with thio-glycosidic fragments.
Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:
(i) low cost of equipment and chemicals
(ii) large area deposition
(iii) low crystallisation temperatures
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.
Portable robotic device for bilateral neuromotor rehabilitation. An appropriate mechanical structure and a series of interchangeable accessories suitably designed allow the execution of various motor gestures of the upper limbs, involving different articulations and muscles. The possibility of being used with both limbs contributes to the recovery of motor coordination and facilitates the mechanism of brain plasticity. Some rotary axes the device is equipped with are motorized and sensorized.
The instrumentation is based on the electrical resistivity tomography (ERT) which is a non-invasive geophysical technology used to obtain information on anomalous bodies possibly present in the subsoil. The theoretical basis lies in the different electrical properties of the lithotypes present in the subsoil.
"Transitional Wearable Companions'' (TWC) are interactive, multisensory, animal-shaped soft toys, developed as a support tool for early intervention in neurodevelopmental disorders (NDD), with particular reference to Autism Spectrum Disorders (ASD). Thanks to internal electronics, TWC can emit coloured lights, nice sounds and mild vibrations when touched on the paws. Such stimulations are usually very reinforcing to children and attract their attention.
We have identified the presence of the poorly characterized precursor proNGF-A in human tissues, deposited its coding nucleotide sequence (GenBank MH358394) and demonstrated its neuroprotective and neurotrophic activity in vitro and in vivo. We inserted mutations into the native molecule, identified through computational analysis, which allow proNGF-A production by eukaryotic expression systems, through a method currently validated on a laboratory scale.
Recently, nanoparticles and nanovesicles have been investigated as potential approaches for the treatment of neurodegenerative diseases. In particular, in the Biotech sector an increasingly deeper penetration of new treatment models and biological drugs based on cellular, subcellular and vesicle therapies is expected. The patent is based on the production of Myelin-based nanoVesicles (MyVes) produced by microfluidics, starting from myelin extracted from brain tissue. These vesicles find two major fields of applications as potential drugs or as supplements/nutraceuticals.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Severe asthma or chronic obstructive pulmonary disease (COPD) are nowadays associated with a poor response to corticosteroids which led to the use of high-dose with consequent improved onset of side effects. The use of nanotechnologies can represent an innovative approach for the effective treatment of both asthma and COPD. The development of new nano-formulations involving the use of nanomaterials and specifically tailored to be inhaled offers numerous advantages over conventional inhaled dosage forms.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.
The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
Therapeutic strategies targeting cell cycle in cancer have in general failed in the clinic since the drugs have lacked the therapeutic index required to achieve a robust response against cancer cells with little or no cytotoxic effect on normal cells. NEK6 kinase, which is implicated in cell cycle control, has recently emerged as an attractive target for the development of novel anticancer drugs with enhanced therapeutic index.