4Ts Game was born in ITD in 2017 to indicate a board game for teacher training, which aims to develop skills in designing collaborative learning activities. The game was originally conceived as a 'tangible' game, consisting of a board and 4 decks of paper cards which contain inputs that guide the teachers/players' design process. Subsequently the game evolved and was developed in its digital version. In this version, developed in Unity and with an underlying knowledge base in Prolog, the game is able to provide feedback to teachers regarding the design/game choices made.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 15
The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).
This innovative technology involves the use of a high-affinity, highly specific antibody that targets extracellular domains of connexin hemichannels (Cx26, Cx30, and Cx32). The antibody has been designed to reduce or inhibit the growth of brain tumors, particularly glioblastoma (GBM), and to alleviate the associated epilepsy. By blocking connexin hemichannels, the antibody interferes with pathological ATP release and other signaling mechanisms that contribute to tumor progression and neural hyperexcitability.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
Our innovative proposal involves an educational robotics training program, resulting from an experimental research that combines traditional educational approaches with the utilization of robotics. Specifically, the educational robot Thymio, developed by EPFL, serves as a facilitator in the learning process to enhance School Readiness.
Recently, nanoparticles and nanovesicles have been investigated as potential approaches for the treatment of neurodegenerative diseases. In particular, in the Biotech sector an increasingly deeper penetration of new treatment models and biological drugs based on cellular, subcellular and vesicle therapies is expected. The patent is based on the production of Myelin-based nanoVesicles (MyVes) produced by microfluidics, starting from myelin extracted from brain tissue. These vesicles find two major fields of applications as potential drugs or as supplements/nutraceuticals.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.
Cheese making is an ancient practice to preserve perishable food such as milk for a long time. The first phase of cheese making involves the addition of rennet of animal origin, which contains the enzymes necessary for the hydrolysis and coagulation of milk caseins, and for cheese ripening (mainly lipase/esterase).
Filamentous bacteriophages for size, in vivo biodistribution and easiness of engineering, are considered as natural nanoparticles. The developed technology allows the construction of bio-nanoparticles based on filamentous bacteriophages delivering proteic antigens and immunomodulating lipids. Thanks to the high content of hydrophobic residues, phage capsid proteins have high binding affinity to lipids, allowing the conjugation of immunostimulating lipids.
AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.
The study of proteins is typically limited to notions, sometimes with the aid of virtual 3D models, obtained from visualization programs. A knowledge of this type, although useful, limits the ability to acquire a more direct knowledge, almost never leads to awareness of dimensions, and is particularly difficult for those who do not have a strong capacity for three-dimensional imagination.
Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.
IMM has developed tactile sensors for the detection of objects and surface and for the handling of objects with humanoid robots (e-skin). These devices can be integrated on ultra-flexible and high conformable substrates and they can be used for multiple applications: 1) for a correct interaction with objects distributed in complex environment; 2) for a safe short-range interaction between humanoid robot and humans; 3) for fabricating smart wearables for the detection of biometric parameters (e.g. heartbeat); 4) for remotely control rovers with wearable gadgets.
Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.
Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.