B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 15
Our proposal consists in a quantum sensor based on a superconduc:ng resonator. The working principle is based on the exponential growth of the susceptibility in proximity of a critical phase transition, where the system quickly switches from the vacuum state to a strong emission of easily detectable microwave signals, in response to extremely weak electromagnetic signals. The sensor can detect microwave and radiowave signals, with single-photon resolu:on.
The present invention relates to a gamma camera for intracavitary use, which is widely used in the field of radio-guided surgery (intra-operative and laparoscopic and robotic-assisted) for the localisation of lymph nodes and tumours and/or other pathologies. The aim of the present invention is to make available an intraoperative tool able to overcome the drawbacks of the present known art.
The virtual dynamic docking, carried out in the MOLBD3 lab of the Institute of Biophysics, allows the identification of new drugs through the structural information deriving from the study of target proteins, responsible for some human pathologies. In particular, we screen drugs or small molecules (commercial/own libraries) against known protein sites, surface cavities, surfaces of protein-protein interactions (fixed/rigid hotspots) or structural transition states (dynamic hotspots).
We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.
The development of functional foods is often limited by industrial manufacturing processes, for example, for the production of baked foods, the use of high cooking temperatures causes denaturation of proteins, destruction of vitamins, alteration of fatty acids, etc. The protection of these components is essential in the production of gluten-free foods as they are generally poor in proteins and vitamins.
Inert biomedical devices with modular load-bearing function designed with peculiar multi-domain composite microstructures. The reference compositional system is Zirconia-Alumina with a prevailing overall composition of customizable zirconia or alumina. Examples of devices are 3D structures consisting of parts with differentiated functional properties, due to different composition/microstructure/architecture, and further functionalizable ex-post to favor and improve the stabilization of the implantation by newly formed bone in superior quantity and quality.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
Mirrors for space applications, besides featuring suitable optical properties, should be light, resistant to mechanical stresses, and unsensitive to light-shadow thermal cycling. The standard optical materials easily fulfill optical and thermal requirements, but are fragile, and the mirrors must be thick (typically 1/6 of the diameter). For this reason they are heavy, and the only available solution is to lighten them, by removing material from the back side, still preserving the necessary mechanical robustness and optical quality.
Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:
(i) low cost of equipment and chemicals
(ii) large area deposition
(iii) low crystallisation temperatures
Portable robotic device for bilateral neuromotor rehabilitation. An appropriate mechanical structure and a series of interchangeable accessories suitably designed allow the execution of various motor gestures of the upper limbs, involving different articulations and muscles. The possibility of being used with both limbs contributes to the recovery of motor coordination and facilitates the mechanism of brain plasticity. Some rotary axes the device is equipped with are motorized and sensorized.
We have identified compounds that show a neuroprotective action in vivo, in models of neurodegenerative diseases (e.g. SMA, Parkinson, Alzheimer, Huntington) in the model organism C. elegans. These compounds consist of: mixtures of 22 natural extracts, 15 natural molecules and 11 synthetic molecules.
Our proposal focuses on innovative formulations containing metallic complexes and plant extracts for diabetes treatment. The formulations were tested in vitro on human adipocyte cell models, showing a strong hypoglycemic effect due to the synergistic action of the two components. The plant extracts, derived from waste biomass of the agri-food industry, possess high antioxidant activity and interesting nutraceutical properties, due to their composition rich in polyphenols.
Currently, liposomes (artificially synthesised vesicles) are widely used as carriers for a variety of molecules in the cosmetic and pharmaceutical industries. In the clinical applications, for instance, they are employed to encapsulate a range of substances, such as antibiotics, proteins, genetic material, vitamins and anti-cancer drugs.
Environmental contamination is a prominent topic. Where the exposure to contaminants such as heavy metals (HMs) or polycyclic aromatic hydrocarbons (PAHs) is greater, the incidence of chronic degenerative diseases, such as oncologic, is increased. Scientific evidence reports that some phytochemicals are able to interact with HMs and PAHs by interfering with their cellular metabolism, inhibiting their cytotoxic mechanisms or helping to reduce tissue concentrations.