Bivalve mollusc shells are made mainly of CaCO3 (ca 95%), with a small fraction of organic material. If from these shells this mineral is retrieved, they could become a renewable and sustainable “mine” of a “blue” CaCO3. Bivalve mollusc shells, also after the removal of the animal flesh, maintain a certain quantity of organic substances, part in the muscle and part in the shell.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 70
Organotypic models of ovarian cancer are 3D models containing defined extracellular matrices, such as collagen and fibronectin, ovarian cancer cells with specific genetic/molecular characteristics, and one or more cancer-associated stromal cell types (fibroblasts, mesothelial cells, endothelial cells) to mimic specific metastatic niches of ovarian cancer (omentum, peritoneum, interstitial stroma) and the complex interactions within tumor tissues.
4Ts Game was born in ITD in 2017 to indicate a board game for teacher training, which aims to develop skills in designing collaborative learning activities. The game was originally conceived as a 'tangible' game, consisting of a board and 4 decks of paper cards which contain inputs that guide the teachers/players' design process. Subsequently the game evolved and was developed in its digital version. In this version, developed in Unity and with an underlying knowledge base in Prolog, the game is able to provide feedback to teachers regarding the design/game choices made.
The technology for organic thin film transistors (OTFTs) is suitable for large area electronics, disposable electronics and "Internet of Things" applications. Circuits employing OTFTs can be realized by using very cheap printing technologies. The electrical behavior of these devices is essentially different from the behavior of silicon MOSFETs and, in order to enable circuit design, compact models specific for OTFTs are needed.
The presented technology is an electrical compact model for OTFTs that:
Ageing characterization of Balsamic Vinegar of Modena (BVM) and Traditional Balsamic Vinegar of Modena (TBVM) by the combined use of Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate statistical analysis. Our database allows to differentiate BVM from TBVM samples. Moreover, within BVMs, samples with ageing <3/>3 years can be discriminated and within TBVM, samples with ageing between 12 and 25 years as well as >25 years can be discriminated.
AIDD is an integrated tool and a radically new way to discovery new drugs for neurodegenerative diseases (Alzheimer’s, Epilepsy, Ageing, etc.).
The proposed technology consists of a portable device for monitoring the freshness of fish, based on its smell. The device is based on a gas sensor and pattern recognition software to correlate the sensor signal to the freshness of the food. The technology is designed for its integration into domestic or industrial refrigerators.
Combined use of High-Resolution Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate statistical analysis for the differentiation of PDO Parmigiano Reggiano samples according to ripening and for the differentiation of PDO Parmigiano Reggiano from “Grana type” products available on the market.
The Biocrystal Facility, a large multidisciplinary laboratory established at the Institute of Molecular Biology and Pathology (IBPM) of CNR, in collaboration with the Biochemistry Department of Sapienza University aims at supporting the italian scientists and the pharmaceutical companies in the research to find new drug and vaccine against the endemic and epidemic diseases through structure-based drug design.
C-ImmSim is one of the most advanced computational models of the immune system. The software resorts to (bit or amino acid) strings to represent the “binding site” of cells and molecules. C-ImmSim is an agent-based model that includes the major classes of immune cells of the lymphoid lineage and some of the myeloid lineage. Helper T cells are divided into five phenotypes. B cells and plasma B are also divided into two phenotypes.
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.
The final technology will add polarimetric capability to imaging cameras in the NUV/optical, providing simultaneous measurements of the different polarization states of the light. This will be obtained by the development of an innovative coating based on nanostructured emissive materials sensitive to the polarization of the incident light. A double layer film of two organic systems will be coupled to image detectors so that the two polarization components of the incoming light are converted into two different colors.
The assessment of bio-humoral markers beyond clinical evaluation would allow a more comprehensive pheno/endotyping of patients affected by chronic inflammatory diseases. Therapy personalization would require a profile of the mediators that are relevant in the disease pathogenesis and that well correlate with prognosis. Currently, the measurement of multiple biomarkers is not included in patient evaluation because it has high costs, requires centralized laboratories, experienced personnel and bulky equipment and is time-consuming.
Shape memory alloys (SMA) have attracted increasing interest in recent years as materials suitable for solid state refrigeration. One of the most attractive methods is mechanical deformation to induce the phase transformation and to generate and absorb heat through the elastocaloric effect.
Digital Eye is an innovative, rapid and high-precision intelligent computer vision system for the non-destructive and contactless evaluation of quality and shelf-life of whole or fresh-cut fruit and vegetables. It integrates advanced vision and artificial intelligence technologies to estimate parameters useful to evaluate the quality of fruit and vegetables, during both the harvesting phase and the cold chain.