Bivalve mollusc shells are made mainly of CaCO3 (ca 95%), with a small fraction of organic material. If from these shells this mineral is retrieved, they could become a renewable and sustainable “mine” of a “blue” CaCO3. Bivalve mollusc shells, also after the removal of the animal flesh, maintain a certain quantity of organic substances, part in the muscle and part in the shell.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 109
Organotypic models of ovarian cancer are 3D models containing defined extracellular matrices, such as collagen and fibronectin, ovarian cancer cells with specific genetic/molecular characteristics, and one or more cancer-associated stromal cell types (fibroblasts, mesothelial cells, endothelial cells) to mimic specific metastatic niches of ovarian cancer (omentum, peritoneum, interstitial stroma) and the complex interactions within tumor tissues.
A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.
Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
AIDD is an integrated tool and a radically new way to discovery new drugs for neurodegenerative diseases (Alzheimer’s, Epilepsy, Ageing, etc.).
Leishmaniasis is a zoonosis caused by the protozoan of the genus Leishmania, which affects both humans and animals through a phlebotomist. After malaria and lymphatic filariasis, leishmaniasis is the third most common disease on a global scale. Leishmania infantum is the species spread in the European continent and the Mediterranean basin. In Italy, from the hilly coastal areas and major islands, the infection has spread to many pre-Alpine areas and northern Italy.
The development of genome editing tools has revolutionized the way we think and deal with genetics. The use of Cas9 or its variants allows modifications of specific sites in the human genome by inducing deletions and insertions in a more or less controlled way. In recent years, a new class of tools for genome editing has emerged: the base editors (BE), which result from the fusion of a modified Cas9, which serves to direct the BE to the target, and an active deaminase acting on the DNA, which mediates the C> T or A> G editing.
Aptamers, short structured single-stranded oligonucleotides binding at high affinity to a given target protein, are selected from large combinatorial libraries through repeated cycles of incubation of the library with the target, recovery and amplification of target-bound oligonucleotides (SELEX technology, Systematic Evolution of Ligands by EXponential enrichment). SELEX can be applied to select aptamers against a known target protein or against a specific cell phenotype, without any prior knowledge of the specific target, leading to new biomarkers discovery.
The technology we participate to develop, called "Zinc-Finger Artificial Transcription Factors (ZF-ATFs)", allows to design, realize and select artificial genes coding for proteins capable of recognizing and binding "potentially" any DNA sequence. We used ZF-ATF technology to reprogram the expression of "beneficial" genes capable of efficiently counteracting the negative effect of mutated genes related to rare diseases.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
The Biocrystal Facility, a large multidisciplinary laboratory established at the Institute of Molecular Biology and Pathology (IBPM) of CNR, in collaboration with the Biochemistry Department of Sapienza University aims at supporting the italian scientists and the pharmaceutical companies in the research to find new drug and vaccine against the endemic and epidemic diseases through structure-based drug design.
The present invention relates to the biomedical sector of the treatment of lung diseases and related symptoms. In particular, the present invention provides compositions and methods based on the use of selected polymeric biomaterials, in combination with stem cells and/or their secretome, capable of synergistically improving the development, regeneration and repair of chronic lung injuries and related symptoms.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.