Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 14 of 14
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
Health360 is a software framework for building cloud platforms to monitor the health of subjects recruited in clinical trials, residents of social housing or athletes in sports teams. The framework is based on interconnected and configurable modules to implement platforms that meet specific needs while maintaining a high level of usability.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.
An interoperable and modular Digital Geospatial Ecosystem (DGE) is proposed, designed, implemented and tested in order to: collect in real time, manage and share geographic data; make usable tools and functionalities to support actions to prevent, monitor and mitigate impacts from extreme events as well as to prepare for and respond to emergency situations. The DGE is composed of the following modules:
The proposing team that works at CNR ISTEC has recently patented a technology for the production of the Smart Polycrystals (SP), i.e. transparent YAG-based ceramic polycrystals (Y3Al5O12) variably doped with rare earths ions and transition metals ions. The SPs solve the problem of the reduction of the efficiency in the solid state laser systems caused by the inhomogeneous heating of the single crystals during the emission process.
The invention concerns an apparatus for measuring the three-dimensional (3-D) sea surface elevation from moving and floating platforms. In particular, the invention consists of two or more synchronized digital video-cameras that frame, from distinct and remote points of view, a common portion of the sea surface. A triangulation process makes it possible to obtain a three-dimensional reconstruction of the sea surface from these images. The invention is particularly suitable for measuring sea waves.
This form describes a programmable, autonomous and stand-alone imaging system for the acquisition and processing of images containing subjects whose size is larger than 1cm (e.g. gelatinous zooplankton, fishes, litter, manufacts), form the seafloor or along the water column, in shallow or deep waters. It is capable to recognize and classify the image content through pattern recognition algorithms that combine computer vision and artificial intelligence methodologies.
The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.
Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.