Bivalve mollusc shells are made mainly of CaCO3 (ca 95%), with a small fraction of organic material. If from these shells this mineral is retrieved, they could become a renewable and sustainable “mine” of a “blue” CaCO3. Bivalve mollusc shells, also after the removal of the animal flesh, maintain a certain quantity of organic substances, part in the muscle and part in the shell.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 20
The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.
B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
Molecular doping (MD) is a doping method based on the use of liquid solutions. The dopant precursor is in liquid form and the material to be doped is immersed in the solution. During the immersion process, the molecule containing the dopant atom is deposited on the surface of the material forming a self-assembled monolayer, that is, ordered and compact. Through a subsequent heat treatment, the molecule decomposes and the dopant diffuses.
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Mirrors for space applications, besides featuring suitable optical properties, should be light, resistant to mechanical stresses, and unsensitive to light-shadow thermal cycling. The standard optical materials easily fulfill optical and thermal requirements, but are fragile, and the mirrors must be thick (typically 1/6 of the diameter). For this reason they are heavy, and the only available solution is to lighten them, by removing material from the back side, still preserving the necessary mechanical robustness and optical quality.
Portable robotic device for bilateral neuromotor rehabilitation. An appropriate mechanical structure and a series of interchangeable accessories suitably designed allow the execution of various motor gestures of the upper limbs, involving different articulations and muscles. The possibility of being used with both limbs contributes to the recovery of motor coordination and facilitates the mechanism of brain plasticity. Some rotary axes the device is equipped with are motorized and sensorized.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
Optical backplane for interconnection between boards of a high-capacity ICT apparatus, data-center, server and the related automatic assembly method. The solution is based on optical connections between boards with an optimized layout on a support with mechanical constraints that involve controlled deformations of commercial optical fibers with standardized connectors. The entire interconnection circuit is divided into N independent circuits, each of which makes the connections between all the boards (Full-Mesh).
The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.
The environment as well as the food production provide a number of both natural and synthetic compounds whose effects on human being as an organism have not yet been determined nor investigated.