A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 31
Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
The development of genome editing tools has revolutionized the way we think and deal with genetics. The use of Cas9 or its variants allows modifications of specific sites in the human genome by inducing deletions and insertions in a more or less controlled way. In recent years, a new class of tools for genome editing has emerged: the base editors (BE), which result from the fusion of a modified Cas9, which serves to direct the BE to the target, and an active deaminase acting on the DNA, which mediates the C> T or A> G editing.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
The present invention relates to the biomedical sector of the treatment of lung diseases and related symptoms. In particular, the present invention provides compositions and methods based on the use of selected polymeric biomaterials, in combination with stem cells and/or their secretome, capable of synergistically improving the development, regeneration and repair of chronic lung injuries and related symptoms.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.
The final technology will add polarimetric capability to imaging cameras in the NUV/optical, providing simultaneous measurements of the different polarization states of the light. This will be obtained by the development of an innovative coating based on nanostructured emissive materials sensitive to the polarization of the incident light. A double layer film of two organic systems will be coupled to image detectors so that the two polarization components of the incoming light are converted into two different colors.
The aim of the present invention is to develop a modular scintigraphic device, with high spatial resolution, capable of creating investigation areas of various shapes and sizes, of compact form and of being used in different types of applications.
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
The present invention relates to a gamma camera for intracavitary use, which is widely used in the field of radio-guided surgery (intra-operative and laparoscopic and robotic-assisted) for the localisation of lymph nodes and tumours and/or other pathologies. The aim of the present invention is to make available an intraoperative tool able to overcome the drawbacks of the present known art.
The assessment of bio-humoral markers beyond clinical evaluation would allow a more comprehensive pheno/endotyping of patients affected by chronic inflammatory diseases. Therapy personalization would require a profile of the mediators that are relevant in the disease pathogenesis and that well correlate with prognosis. Currently, the measurement of multiple biomarkers is not included in patient evaluation because it has high costs, requires centralized laboratories, experienced personnel and bulky equipment and is time-consuming.
This technology is an e-health application. The DragONE application is inspired by the global guidelines for the management of asthma, which promote the opportunity to implement a multidimensional assessment of pediatric asthma using innovative systems. DragONE allows to record data on the subjective control of asthma, by using easy-to-understand colors and icons for children (red, yellow or green dragon), to keep track to the patient’s of perceived state.
Health360 is a software framework for building cloud platforms to monitor the health of subjects recruited in clinical trials, residents of social housing or athletes in sports teams. The framework is based on interconnected and configurable modules to implement platforms that meet specific needs while maintaining a high level of usability.
The platform HistoPlat implies the development and validation of a mathematical algorithm, potentially combinable with an image analysis software, that, through a multiparametric approach including the immunohistochemical analysis of both expression and localization of multiple markers, allows the histopathologist or oncologist to optimize the diagnosis and prognosis, and to predict the clinical response to therapies directed towards validated and/or innovative molecular targets, also taking into account the individual variability of each pati