The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 10 of 10
The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
Mergers e Acquisitions represent important forms of business deals because of the volumes involved in the transactions and the role of the innovation activity of companies. By considering the patent activity of about one thousand companies, we develop a method to predict future acquisitions by assuming that companies deal more frequently with technologically related ones.
It enables a systemic and evolutionary development of people, organisations and territories by overcoming the criticality of traditional approaches, which get stuck because of rationalistic reductions in complexity, as well as lack of motivation. This responds to the social sustainability needs highlighted by the UN 2030 agenda. The methodology is based on 3 pillars:
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
An interoperable and modular Digital Geospatial Ecosystem (DGE) is proposed, designed, implemented and tested in order to: collect in real time, manage and share geographic data; make usable tools and functionalities to support actions to prevent, monitor and mitigate impacts from extreme events as well as to prepare for and respond to emergency situations. The DGE is composed of the following modules:
uManager is a management game designed to foster the development of young students' entrepreneurial skills and abilities. The game offers the opportunity to manage a tourist village, stimulating the skills of decision making and problem-solving in a simulated scenario adhering to the real one. uManager is suitable for use in the classroom or at a distance, in formal and informal contexts.
VOLIS is an online platform that contains various tests for assessing Italian Sign Language (LIS) comprehension skills in signing children, from 4 to 11 years of age. The consequences of some difficulties such as deafness, cognitive impairments and autism spectrum disorder may affect learning, social interaction and broad communicative skills. The use of LIS may support children that have difficulties in acquiring and using a using spoken languages.