Aptamers, short structured single-stranded oligonucleotides binding at high affinity to a given target protein, are selected from large combinatorial libraries through repeated cycles of incubation of the library with the target, recovery and amplification of target-bound oligonucleotides (SELEX technology, Systematic Evolution of Ligands by EXponential enrichment). SELEX can be applied to select aptamers against a known target protein or against a specific cell phenotype, without any prior knowledge of the specific target, leading to new biomarkers discovery.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 17
C-ImmSim is one of the most advanced computational models of the immune system. The software resorts to (bit or amino acid) strings to represent the “binding site” of cells and molecules. C-ImmSim is an agent-based model that includes the major classes of immune cells of the lymphoid lineage and some of the myeloid lineage. Helper T cells are divided into five phenotypes. B cells and plasma B are also divided into two phenotypes.
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.
Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit, by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
The platform HistoPlat implies the development and validation of a mathematical algorithm, potentially combinable with an image analysis software, that, through a multiparametric approach including the immunohistochemical analysis of both expression and localization of multiple markers, allows the histopathologist or oncologist to optimize the diagnosis and prognosis, and to predict the clinical response to therapies directed towards validated and/or innovative molecular targets, also taking into account the individual variability of each pati
The herein described technology aims at the development of a platform of injectable hydrogels for application as drug carriers for localized delivery or in the regenerative medicine field. The use of ad-hoc synthesized poly(ether urethane)s (PEUs) as hydrogel forming materials is a common property which characterizes all the systems belonging to this platform.
Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.
Integrative omics has posed new challenges in modern precision medicine, particularly in oncology, including i) the identification of new tumor markers for early, precise, and non-invasive diagnostics, and ii) the discovery of innovative molecular targets for therapeutic applications. Our studies on medulloblastoma, a highly malignant childhood tumor, have contributed to identifying RNA molecules that meet these criteria.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Severe asthma or chronic obstructive pulmonary disease (COPD) are nowadays associated with a poor response to corticosteroids which led to the use of high-dose with consequent improved onset of side effects. The use of nanotechnologies can represent an innovative approach for the effective treatment of both asthma and COPD. The development of new nano-formulations involving the use of nanomaterials and specifically tailored to be inhaled offers numerous advantages over conventional inhaled dosage forms.
Combinations of several enzymes in a production chain are preferred to “first generation” enzymatic processes (where the "single reaction - single enzyme" principle was followed), for the synthesis of compounds with high added value starting from simple and cheap substrates. An important requirement for obtaining control in "cascade enzymatic reactions" is the ability to deliver from one biocatalyst to the next one the various intermediates, limiting as much as possible the diffusion of the latter in the solvent.
Recently, it has been demonstrated that Raman spectroscopy can play a fundamental role in assisting the work of the anatomopathologist by allowing classification of oncological samples with practically 100% accuracy in oncological diagnosis.
The development of an innovative screening platform of natural marine extracts guided by biological assays represents one of the main products developed within the Antitumor Drugs and Vaccines from the SEA (ADViSE) project which aims to provide a new vision in Drug Discovery processes.
To the enterprises working in the field of nutrition/nutraceutics and drug development/repositioning, we offer the know-how and state-of-the-art instrumentation of our labs to monitor multiple relevant biological parameters at the cellular level: metabolic activity, vitality, health, but also stress and toxicity. The use of advanced imaging techniques based on fluorescent/bioluminescent probes together with the availability of time-lapse acquisitions, guarantee the cutting-edge analysis of different biological parameters over time.