AIDD is an integrated tool and a radically new way to discovery new drugs for neurodegenerative diseases (Alzheimer’s, Epilepsy, Ageing, etc.).
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 10 of 10
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Optical backplane for interconnection between boards of a high-capacity ICT apparatus, data-center, server and the related automatic assembly method. The solution is based on optical connections between boards with an optimized layout on a support with mechanical constraints that involve controlled deformations of commercial optical fibers with standardized connectors. The entire interconnection circuit is divided into N independent circuits, each of which makes the connections between all the boards (Full-Mesh).
The platform allows the deployment of a sensor network with peripheral nodes spread on the crop fields or on the environment for the monitoring of crop parameters/environmental parameters. The network architecture integrated LoRa peripheral nodes for short-medium range communication and star-center NB-IoT based for long range communication. It includes a web server and MySQL database for data storage and visualization. The network architecture is scalable to adapt to the area to monitor.
The platform allows acquisition of data from commercial and custom sensors. By now, the system has been embedded in a wearable wristband where elastomeric based strain gauge have been integrated to detect fine hand/wrist/arm movements. The platform integrates inertial sensors (accelerometers, gyroscopes) to acquire more details about the subject movements. A sensor-fusion algorithm enables advanced movement recognition (gesture, 3D orientation). A machine-learning algorithm is in development to increase the performance of the platform.
The Q-PLL is an innovative nonlinear circuit which is able to synchronize to a signal comprising two or more incommensurate frequencies (forcing).
When the forcing contains two prevailing frequencies the locking response is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.
In particular, the locked frequency is closely related to the pitch perception of complex sound in humans.
Network structures that require the use of a common database are affected by the risk of processing identification data that are necessary for sharing information and updating and processing data with equal access level between the network nodes. However, this sharing could lead risks of vulnerability when identification data are exchanged between the nodes of the network. The proposed information system involves the exchange of information by encrypting the identification data with an MD5 Hashing procedure (RFC1321).
The technology refers to a system for the safety and control of the mobility of vehicles, pedestrians, and mass transport users, in conventional and advanced contexts and is suitable for use as an infrastructure for the production/sharing of information and data, aimed at monitoring and intervention in critical areas by offering specific functions concerning the detection of potentially dangerous situations or the optimization of resources.
This form describes a programmable, autonomous and stand-alone imaging system for the acquisition and processing of images containing subjects whose size is larger than 1cm (e.g. gelatinous zooplankton, fishes, litter, manufacts), form the seafloor or along the water column, in shallow or deep waters. It is capable to recognize and classify the image content through pattern recognition algorithms that combine computer vision and artificial intelligence methodologies.