Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 15 of 21

# Record card
239
Description

Bivalve mollusc shells are made mainly of CaCO3 (ca 95%), with a small fraction of organic material. If from these shells this mineral is retrieved, they could become a renewable and sustainable “mine” of a “blue” CaCO3. Bivalve mollusc shells, also after the removal of the animal flesh, maintain a certain quantity of organic substances, part in the muscle and part in the shell.

Thematic areas
Bioeconomy
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Health & Biotech
Health & Biotech / Care, Hygiene, Cosmetics
Energy and environmental sustainability / Waste management
Additive and advanced industrial manufacturing
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Chemicals & Physics
Chemicals & Physics / Inorganic substances
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Materials
Materials / Ceramic materials
Chemicals & Physics / Subtainable substances and green chemistry
Materials / Paper technology
Materials / Plastics, polymers
# Record card
171
Description

B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Internet of Things
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Bioeconomy
Materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Materials / Composite and hybrid materials
Materials / Plastics, polymers
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Special chemicals
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy storage and transport
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Wearable technologies
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
# Record card
89
Description

Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.

Thematic areas
Aerospace and Earth Science / Space sciences
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Propulsion
Automotive transport and logistics / Transport infrastructures
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Man made fibres
Chemicals & Physics / Special chemicals
Chemicals & Physics / Subtainable substances and green chemistry
Materials / Building materials
Materials / Ceramic materials
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Properties of materials, corrosion, degradation
Materials / Semiconductors and Superconductors
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Rational use of energy
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Energy and environmental sustainability / Cleaner use of fossil fuels
Energy and environmental sustainability / Nuclear engineering
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Building materials
Health & Biotech / Bio-medicals
# Record card
27
Description

The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
ICT & Electronics / Big Data
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Medical Device
Health & Biotech / Biosensors
# Record card
45
Description

CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.

Thematic areas
Materials / Building materials
Materials / Ceramic materials
Materials / Composite and hybrid materials
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Propulsion
Aerospace and Earth Science / Aeronautical technologies and avionics
# Record card
57
Description

Inert biomedical devices with modular load-bearing function designed with peculiar multi-domain composite microstructures. The reference compositional system is Zirconia-Alumina with a prevailing overall composition of customizable zirconia or alumina. Examples of devices are 3D structures consisting of parts with differentiated functional properties, due to different composition/microstructure/architecture, and further functionalizable ex-post to favor and improve the stabilization of the implantation by newly formed bone in superior quantity and quality.

Thematic areas
Health & Biotech / Bio-medicals
Materials / Ceramic materials
Materials / Composite and hybrid materials
# Record card
55
Description

The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.

Thematic areas
ICT & Electronics / Cybersecurity
ICT & Electronics / Network technology, network security
ICT & Electronics / Future Internet
ICT & Electronics / Big Data
ICT & Electronics / Artificial Intelligence
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / IT and Telematics applications
ICT & Electronics / Microwaves and RF
ICT & Electronics / Telecommunications
Aerospace and Earth Science / Satellite technologies
# Record card
73
Description

Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.

The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.

Thematic areas
Chemicals & Physics / Inorganic substances
Materials / Ceramic materials
Materials / Composite and hybrid materials
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Pollution treatment (air, soil, water)
# Record card
68
Description

In the last years, genetics played a strategic role in the identification of therapeutic targets for complex diseases. Genetic studies identified thousands of variants contributing to disease onset and/or to the influence of measurable features (phenotypes) impacting health. The mechanism of action by which they modulate diseases and phenotypes is still unknown for the vast majority.

Thematic areas
Health & Biotech / Bio-informatics
ICT & Electronics / Big Data
# Record card
183
Description

This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.

Thematic areas
Materials
Materials / Ceramic materials
Materials / Composite and hybrid materials
Chemicals & Physics
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability
Tourism, social sciences and cultural heritage / Safety and security
Health & Biotech
Health & Biotech / Care, Hygiene, Cosmetics
# Record card
287
Description

We offer integrated tools for the acquisition, analysis, modelling and optimization of visitor flows in museums characterized by frequent congestion and/or complex geometries. Our intervention is divided into 4 phases:

1) Data acquisition related to the paths followed by visitors in the museum, number of visitors in the rooms, time of permanence, ... The acquisition is performed via a specific IoT system, smartphone app or manual counting.

Thematic areas
Tourism, social sciences and cultural heritage / Archeometry
Tourism, social sciences and cultural heritage / Safety and security
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Big Data
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
ICT & Electronics / Internet of Things
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / IT and Telematics applications
Tourism, social sciences and cultural heritage / Multimedia technologies
# Record card
11
Description

Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:

(i) low cost of equipment and chemicals

(ii) large area deposition

(iii) low crystallisation temperatures

Thematic areas
Chemicals & Physics / Inorganic substances
Materials / Ceramic materials
Materials / Semiconductors and Superconductors
Materials / Glass
Materials / Optical materials
# Record card
17
Description

The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.

Thematic areas
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Robotics
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics / Atomic and molecular spectroscopy
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Electron microscopy
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Simulation
Energy and environmental sustainability / Wearable technologies
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / Microwaves and RF
# Record card
291
Description

The proposed technology offers a novel and versatile method for detecting cracks in insulating materials of electrically polarized metal devices, i.e. dielectric coatings on metals, especially in low-pressure gas environments. It uses an ionized plasma that interacts uniformly with the insulating surface, allowing to detect defects invisible to the naked eye. The detection occurs in a single test without changing the environmental conditions and without risking harmful electrical discharges.

Thematic areas
Materials / Properties of materials, corrosion, degradation
Materials / Processes of production & treatment of materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Chemicals & Physics / Inorganic substances
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
ICT & Electronics / Electronics and microelectronics
Materials / Metals & alloys
Chemicals & Physics / Cold Plasmas
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Materials / Ceramic materials
# Record card
299
Description

An interoperable and modular Digital Geospatial Ecosystem (DGE) is proposed, designed, implemented and tested in order to: collect in real time, manage and share geographic data; make usable tools and functionalities to support actions to prevent, monitor and mitigate impacts from extreme events as well as to prepare for and respond to emergency situations. The DGE is composed of the following modules:

Thematic areas
Energy and environmental sustainability / Environmental engineering/technologies
Aerospace and Earth Science / Geological engineering
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Energy and environmental sustainability / Sensory
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Big Data
Tourism, social sciences and cultural heritage / Education & learning
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / IT and Telematics applications
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Natural disasters