The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 14 of 14
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
The technology has been developed over the past 25 years, implementing new innovative components during time. The methodology provides a set of 2D acoustic images in different frequency intervals, for revealing the structural damage (detachments, delaminations, structural weakening) in multi-layer structures and artworks (mural paintings, frescoes, ceramic panels, panel paintings). Recently, interesting results have been obtained in studies of the water related deterioration effects on antique masonry structures.
Data loggers for environmental data recording have been commercially available for several years, but their cost often limits their use. The development of low-cost data loggers, with adequate features for the acquisition of environmental and physiological data, to understand the relationships between organisms and the environment, and capable of recording and storing data for long periods of time is essential for their diffusion in the naturalistic field.
We propose a compact innovative spectroscopy system operating in the UV range. In the actual version, designed for gas, it exhibits: an aluminium tubular optical chamber (length can be adjusted; currently is 20 cm); a cheap commercial UV LED; a SiC visible blind UV detector designed and manufactured at the CNR-IMM facilities. The team developed also the electronic chain for wireless remote real time read out; while able to deal with pA current levels, it uses very cheap components and construction technology.
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
WembraneX is an Italian start-up born with the ambition to make a significant contribution to UN Sustainable Goal 6 - Ensure Access to Clean Water and Sanitation for all by 2030.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.
The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
The invention relates to the water purification sector; it refers to a phytodepuration module and to a plant including this module. The objective is decontamination and recovery of drinking water from contaminated springs and wells, thermal, rainwater, wastewater and industrial wastewater. Phytodepuration tanks are known which use ferns to decontaminate water, but have the limits of requiring large surfaces and / or long treatment times.
AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.
An interoperable and modular Digital Geospatial Ecosystem (DGE) is proposed, designed, implemented and tested in order to: collect in real time, manage and share geographic data; make usable tools and functionalities to support actions to prevent, monitor and mitigate impacts from extreme events as well as to prepare for and respond to emergency situations. The DGE is composed of the following modules:
The proposed device is a semi-transparent screen that allows simultaneous viewing of what is beyond the screen and the images projected onto its surface. It consists of two thin glass plates with reflective elements arranged as microlenses, embedded in a resin. The projector's light is reflected by the elements towards the user's eye, while external light passes through the transparent layers without distortion. The transparency and brightness of the screen can be adjusted by modifying the reflective elements.