Recently, it has been demonstrated that Raman spectroscopy can play a fundamental role in assisting the work of the anatomopathologist by allowing classification of oncological samples with practically 100% accuracy in oncological diagnosis.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 46 - 60 of 60
The development of an innovative screening platform of natural marine extracts guided by biological assays represents one of the main products developed within the Antitumor Drugs and Vaccines from the SEA (ADViSE) project which aims to provide a new vision in Drug Discovery processes.
This is a high-throughput sequencing based method to map euchromatin and heterochromatin accessibility. The method is based on the sequential extraction of distinct nuclear fractions containing: soluble proteins (S1 fraction); the surnatant obtained after DNase treatment (S2 fraction); DNase-resistant chromatin extracted with high salt buffer (S3 fraction); and the most condensed and insoluble portion of chromatin, extracted with urea buffer that solubilizes the remaining proteins and membranes (S4 fraction).
TNBC affects around 170,000 patients worldwide each year and accounts for 15-20% of breast cancer; compared to other types of breast cancer, TNBC is more aggressive and precocious. Its diagnosis, made difficult by the existence of subtypes with different characteristics, is fundamental to establish prognosis and personalized therapy. Nucleic acid aptamers are highly selective low-molecular-weight molecules, synthesizable at low cost and easily modifiable, capable of binding and detecting tissue markers ("aptahistochemistry”). Our team has iden
Wine is one of the economically most important beverages and may be subject to fraud and mislabelling, although that there are specific and strict rules protecting its authenticity in Europe. Single Nucleotide Polymorphisms (SNPs), recently identified and characterized thanks to advances in genomics, are considered the newest type of molecular marker for grapevine identification.
The software is based on mathematical models able of simulating the time evolution of the different stages of a pest population starting from environmental data collected from weather stations located in an area of interest and information regarding the development stage of the host plant. The models are of two types: phenological, which provides information on the stages population as a function of time and demographic which also allows to know the abundance of each population stage.
Environmental contamination is a prominent topic. Where the exposure to contaminants such as heavy metals (HMs) or polycyclic aromatic hydrocarbons (PAHs) is greater, the incidence of chronic degenerative diseases, such as oncologic, is increased. Scientific evidence reports that some phytochemicals are able to interact with HMs and PAHs by interfering with their cellular metabolism, inhibiting their cytotoxic mechanisms or helping to reduce tissue concentrations.
Spark anemometry based on the analysis of an electrical discharge can be implemented in the automotive sector through measurements of the secondary circuit voltage. Actual applicability of this method is quite limited, given that it requires additional hardware that is not compatible with space requirements specific for production engines (e.g. fueled with gasoline, LPG or methane); furthermore, applying high voltage measurements is complex and entails increased cost.
This technology is based on an algorithm able to provide the probability of being asthmatic with high accuracy. This probability is based on the evaluation of respiratory function and, specifically, of forced expiratory vital capacity in the first second (FEV1), in resting conditions, and 20 minutes after administration of a bronchodilator drug.
Polymer development is approaching to a new stage of advancement in which new functionalities especially in combination with conductive polymers and nanomaterials are more effective. In this context the study of new composites is the key to enable the development of disruptive technologies as additive manufacturing. Increasing electrical conductivity open the way to a new class of objects to be prototyped rapidly at low cost with a high level of customization.
The substitution of fossil derived monomers in thermosetting resins is a very important point to look at to face environmental impact issues related with the use of traditional resins. The research group set up a protocol for the preparation of thermosetting resins starting from vegetable oils with different composition to substitute the petroleum-based monomers. The materials obtained in this way have a bio-based carbon content higher than 80%.
The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.
We present a technology for the multiscale isolation (analytical-laboratory-production) of Extracellular Vesicles (VE), which overcomes the limitations of the currently available methods. As opposed to traditional "affinity-based" systems that exploit antibodies, our technology represents a radical paradigm shift in the development of affinity probes for vesicles, i.e.
Our treatment demonstrated the ability to kill metastatic human melanoma cells, for which there are very few effective therapeutic approaches. Use of a specific Essential Oil (EO) to inhibit the replication of human metastatic melanoma cells. This EO can be used both for direct application to the skin, and administered by mouth to reach both primary and metastatic melanomas.
Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.