Bivalve mollusc shells are made mainly of CaCO3 (ca 95%), with a small fraction of organic material. If from these shells this mineral is retrieved, they could become a renewable and sustainable “mine” of a “blue” CaCO3. Bivalve mollusc shells, also after the removal of the animal flesh, maintain a certain quantity of organic substances, part in the muscle and part in the shell.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 21
Aliophen-XP is a highly concentrated polyphenolic composition derived from Aliophen®, a patented formulation based on malt and hops (Patent No. 102017000096298). Developed to enhance the original formulation, Aliophen-XP is produced through a specialized process that removes components potentially interfering with the biological activity of the bioactive compounds naturally extracted from malt and hops.
C-ImmSim is one of the most advanced computational models of the immune system. The software resorts to (bit or amino acid) strings to represent the “binding site” of cells and molecules. C-ImmSim is an agent-based model that includes the major classes of immune cells of the lymphoid lineage and some of the myeloid lineage. Helper T cells are divided into five phenotypes. B cells and plasma B are also divided into two phenotypes.
The technology based on cell or tissue cultures is very useful for the production of bioactive compounds. These molecules, depending on the class they belong to, can be used in the food, pharmaceutical and cosmetic industry. In particular, the developed technology is addressed to the optimization of bioactive compounds in plant cell/tissue cultures having the biosynthetic pathway of the compound of interest.
INCIPIT technology allowed the implementation of a multifunctional, micro-structured and electroconductive therapeutic product to treat patients with myocardial infarction, the leading cause of death for cardiovascular disease. Current therapies (drugs, bypass, angioplasty) do not restore the functionality of damaged myocardial tissue.
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
It enables a systemic and evolutionary development of people, organisations and territories by overcoming the criticality of traditional approaches, which get stuck because of rationalistic reductions in complexity, as well as lack of motivation. This responds to the social sustainability needs highlighted by the UN 2030 agenda. The methodology is based on 3 pillars:
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.
The proposed technology offers a novel and versatile method for detecting cracks in insulating materials of electrically polarized metal devices, i.e. dielectric coatings on metals, especially in low-pressure gas environments. It uses an ionized plasma that interacts uniformly with the insulating surface, allowing to detect defects invisible to the naked eye. The detection occurs in a single test without changing the environmental conditions and without risking harmful electrical discharges.
The systems simulate, with high reproducibility, the conditions that occur in the different compartments of the gastrointestinal tracts and are promising to accurately mimic the digestive process, with the possibility to evaluate bioaccessibility and bioavailability. Moreover, the systems permit to study the synergic and reciprocal effects between the bioactive compounds characteristic of food and intestinal microbiota.
Combinations of several enzymes in a production chain are preferred to “first generation” enzymatic processes (where the "single reaction - single enzyme" principle was followed), for the synthesis of compounds with high added value starting from simple and cheap substrates. An important requirement for obtaining control in "cascade enzymatic reactions" is the ability to deliver from one biocatalyst to the next one the various intermediates, limiting as much as possible the diffusion of the latter in the solvent.
Plants can compete favorably with traditional expression systems (mammalian cells, yeasts or bacteria) to produce recombinant proteins/peptides of pharmaceutical/industrial/agrifood interest. This technology names “Plant Molecular Farming”. The CNR-IBBA research team offers the study of new strategies for the expression and optimization of recombinant proteins/peptides in plant-based systems (plant tissues, transgenic plants, plant cell culture). Our pipeline is based on the following modules:
Currently, liposomes (artificially synthesised vesicles) are widely used as carriers for a variety of molecules in the cosmetic and pharmaceutical industries. In the clinical applications, for instance, they are employed to encapsulate a range of substances, such as antibiotics, proteins, genetic material, vitamins and anti-cancer drugs.
We developed an hybrid organic-inorganic composite consisting of a 2D perovskite and a copolymer. At room temperature the composite is highly transparent in the visible region with transmittance > 90%. At higher temperatures, the movement of the polymer chains releases the precursors, allowing the perovskite formation, which results in a colored film. The color changes according to the ‘n’ value of the PVK. PVK with n=1 starts coloring at 70°C, achieving a ∆Tmax = 91.5% at 510 nm.