Organotypic models of ovarian cancer are 3D models containing defined extracellular matrices, such as collagen and fibronectin, ovarian cancer cells with specific genetic/molecular characteristics, and one or more cancer-associated stromal cell types (fibroblasts, mesothelial cells, endothelial cells) to mimic specific metastatic niches of ovarian cancer (omentum, peritoneum, interstitial stroma) and the complex interactions within tumor tissues.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 33
A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).
Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
Aptamers, short structured single-stranded oligonucleotides binding at high affinity to a given target protein, are selected from large combinatorial libraries through repeated cycles of incubation of the library with the target, recovery and amplification of target-bound oligonucleotides (SELEX technology, Systematic Evolution of Ligands by EXponential enrichment). SELEX can be applied to select aptamers against a known target protein or against a specific cell phenotype, without any prior knowledge of the specific target, leading to new biomarkers discovery.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
A virtuous multi-step biorefinery platform to convert urban biowaste into valuable molecules, not disregarding renewable energy and digestate production. The strategy is based on the integration of a thermal pretreatment capable of significantly increasing the fraction of fermentable organic carbon, in order to furthermore change the status of the feedstock to become more suitable for production of a) high-value bio-based molecules, b) biomethane and c) hygienized digestate to be recycled as biofertilizer.
C-ImmSim is one of the most advanced computational models of the immune system. The software resorts to (bit or amino acid) strings to represent the “binding site” of cells and molecules. C-ImmSim is an agent-based model that includes the major classes of immune cells of the lymphoid lineage and some of the myeloid lineage. Helper T cells are divided into five phenotypes. B cells and plasma B are also divided into two phenotypes.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).
Molecular doping (MD) is a doping method based on the use of liquid solutions. The dopant precursor is in liquid form and the material to be doped is immersed in the solution. During the immersion process, the molecule containing the dopant atom is deposited on the surface of the material forming a self-assembled monolayer, that is, ordered and compact. Through a subsequent heat treatment, the molecule decomposes and the dopant diffuses.
Method for extracting, with high yield, phycobiliproteins from cyanobacterial and/or algal biomass, obtaining aqueous extracts characterized by high concentration of pigments (4-5 mg/mL) and a purity, at least equal to food/cosmetic grade (P≥2).
Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.
The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.
The current technology allows to achieve new macroporous superadsorbent polymeric materials able to remove toxic contaminants from water and soil showing excellent sequestering properties against arsenate As (V), chromate Cr (VI) and Borate B (III) ions. The material is obtained by radical cryopolymerization of the monomer 4'-vinyl-benzyl-N-methyl-D-glucamine and / or its mixtures with hydroxyethyl-methacrylate (HEMA).
Anthocyanins are antioxidant polyphenolic pigments produced by plants that are widely used in the food, cosmetic and pharmaceutical industries. The technology allows to obtain in a short time potato cell lines in which the production of highly acetylated and highly complex anthocyanins is increased in addition to other antioxidant polyphenolic compounds. The obtained cellular lines have a high production efficiency, comparable to the extraction of berries, but with the advantage of having an on-demand production which is not limited to seasonality.