4Ts Game was born in ITD in 2017 to indicate a board game for teacher training, which aims to develop skills in designing collaborative learning activities. The game was originally conceived as a 'tangible' game, consisting of a board and 4 decks of paper cards which contain inputs that guide the teachers/players' design process. Subsequently the game evolved and was developed in its digital version. In this version, developed in Unity and with an underlying knowledge base in Prolog, the game is able to provide feedback to teachers regarding the design/game choices made.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 50
The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).
Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
Direct quantification of the percentage of arabica in roasted and ground coffee blends of arabica/robusta by High Resolution Nuclear Magnetic Resonance spectroscopy (NMR), in solution and multivariate statistical analysis. Particularly, the metabolites content present in water extracts of coffee is analyzed and compared with NMR data of our database.
This innovative technology involves the use of a high-affinity, highly specific antibody that targets extracellular domains of connexin hemichannels (Cx26, Cx30, and Cx32). The antibody has been designed to reduce or inhibit the growth of brain tumors, particularly glioblastoma (GBM), and to alleviate the associated epilepsy. By blocking connexin hemichannels, the antibody interferes with pathological ATP release and other signaling mechanisms that contribute to tumor progression and neural hyperexcitability.
This proposal focuses on the preparation of biocoatings enriched with varying percentages of mint essential oil nanoparticles, followed by their application to potato tubers to limit sprouting and control the development of alkaloids, particularly solanine, a toxic substance for the body.
The technology we participate to develop, called "Zinc-Finger Artificial Transcription Factors (ZF-ATFs)", allows to design, realize and select artificial genes coding for proteins capable of recognizing and binding "potentially" any DNA sequence. We used ZF-ATF technology to reprogram the expression of "beneficial" genes capable of efficiently counteracting the negative effect of mutated genes related to rare diseases.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
The Biocrystal Facility, a large multidisciplinary laboratory established at the Institute of Molecular Biology and Pathology (IBPM) of CNR, in collaboration with the Biochemistry Department of Sapienza University aims at supporting the italian scientists and the pharmaceutical companies in the research to find new drug and vaccine against the endemic and epidemic diseases through structure-based drug design.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
Coupled Stirling Engine/Fluidized Bed Combustor for micro-Distributed energy production from Biomass
A distributed micro-cogeneration system has been developed for continuous and programmable autonomous production of thermal (between 25 and 70 kWth) and electrical (between 5 and 10 kWel) energy starting from heterogeneous biomasses.
The virtual dynamic docking, carried out in the MOLBD3 lab of the Institute of Biophysics, allows the identification of new drugs through the structural information deriving from the study of target proteins, responsible for some human pathologies. In particular, we screen drugs or small molecules (commercial/own libraries) against known protein sites, surface cavities, surfaces of protein-protein interactions (fixed/rigid hotspots) or structural transition states (dynamic hotspots).
Our innovative proposal involves an educational robotics training program, resulting from an experimental research that combines traditional educational approaches with the utilization of robotics. Specifically, the educational robot Thymio, developed by EPFL, serves as a facilitator in the learning process to enhance School Readiness.