4Ts Game was born in ITD in 2017 to indicate a board game for teacher training, which aims to develop skills in designing collaborative learning activities. The game was originally conceived as a 'tangible' game, consisting of a board and 4 decks of paper cards which contain inputs that guide the teachers/players' design process. Subsequently the game evolved and was developed in its digital version. In this version, developed in Unity and with an underlying knowledge base in Prolog, the game is able to provide feedback to teachers regarding the design/game choices made.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 17
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
CPIAbot is a conversational assistant supporting the learning of Italian L2 for migrants. It has been tested in particular in the context of CPIA - Centri Provinciali per l'Istruzione degli Adulti - MIUR.
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
We offer integrated tools for the acquisition, analysis, modelling and optimization of visitor flows in museums characterized by frequent congestion and/or complex geometries. Our intervention is divided into 4 phases:
1) Data acquisition related to the paths followed by visitors in the museum, number of visitors in the rooms, time of permanence, ... The acquisition is performed via a specific IoT system, smartphone app or manual counting.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
The proposed technology deals with the development of active SERS (Surface Enhanced Raman Scattering) substrates ad hoc designed for diagnostics of cultural heritage. The substrates are prepared starting from common commercial 'polishing film' sheets (lapping optical fibers) showing an intrinsic roughness (48- 1000 nm) that favors the SERS effect. A pattern of silver or gold nanoparticles are deposited on these films through Pulsed Laser Deposition (PLD).
The instrument which is under development is a non-conventional portable Raman spectrometer. Raman spectrometers provide the molecular composition of the material surfaces, essential for their identification. The instrument peculiarity relies in the simultaneous acquisition of Raman spectra at imaged position and at different micrometric distances (offset) from the laser illumination area.
AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.
An interoperable and modular Digital Geospatial Ecosystem (DGE) is proposed, designed, implemented and tested in order to: collect in real time, manage and share geographic data; make usable tools and functionalities to support actions to prevent, monitor and mitigate impacts from extreme events as well as to prepare for and respond to emergency situations. The DGE is composed of the following modules:
The study of proteins is typically limited to notions, sometimes with the aid of virtual 3D models, obtained from visualization programs. A knowledge of this type, although useful, limits the ability to acquire a more direct knowledge, almost never leads to awareness of dimensions, and is particularly difficult for those who do not have a strong capacity for three-dimensional imagination.