Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 19
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
Coupled Stirling Engine/Fluidized Bed Combustor for micro-Distributed energy production from Biomass
A distributed micro-cogeneration system has been developed for continuous and programmable autonomous production of thermal (between 25 and 70 kWth) and electrical (between 5 and 10 kWel) energy starting from heterogeneous biomasses.
Our innovative proposal involves an educational robotics training program, resulting from an experimental research that combines traditional educational approaches with the utilization of robotics. Specifically, the educational robot Thymio, developed by EPFL, serves as a facilitator in the learning process to enhance School Readiness.
The current technology allows to achieve new macroporous superadsorbent polymeric materials able to remove toxic contaminants from water and soil showing excellent sequestering properties against arsenate As (V), chromate Cr (VI) and Borate B (III) ions. The material is obtained by radical cryopolymerization of the monomer 4'-vinyl-benzyl-N-methyl-D-glucamine and / or its mixtures with hydroxyethyl-methacrylate (HEMA).
The herein described technology aims at the development of a platform of injectable hydrogels for application as drug carriers for localized delivery or in the regenerative medicine field. The use of ad-hoc synthesized poly(ether urethane)s (PEUs) as hydrogel forming materials is a common property which characterizes all the systems belonging to this platform.
Uniform coverage with porous layers over extended surfaces is beneficial for many purposes. Depending on the nature/composition, thickness and interfaces of the layer, this kind of special coverage can assure pivotal properties such as transparency, bendability, high surface reactivity, intermixing capability. In the long list of desired porous materials, transparent oxides find application in the fields of Photovoltaics, Sensing, Photocatalysis, Water Purification and Splitting, Lithium Batteries and many more.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
We offer integrated tools for the acquisition, analysis, modelling and optimization of visitor flows in museums characterized by frequent congestion and/or complex geometries. Our intervention is divided into 4 phases:
1) Data acquisition related to the paths followed by visitors in the museum, number of visitors in the rooms, time of permanence, ... The acquisition is performed via a specific IoT system, smartphone app or manual counting.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.
The full face mask adapts to the face of the user; it is used in the medical field where there may be close contact between a patient and a doctor and in all those areas of possible social overcrowding that, in case of a pandemic, may lead to the spread of a virus. To date, as the main means of containment and prevention of infection, are used masks made of fabric or equipped with filter that adhere to the face of the user in order to shield nose and mouth and / or filter the air inhaled and / or exhaled by the user.
An interoperable and modular Digital Geospatial Ecosystem (DGE) is proposed, designed, implemented and tested in order to: collect in real time, manage and share geographic data; make usable tools and functionalities to support actions to prevent, monitor and mitigate impacts from extreme events as well as to prepare for and respond to emergency situations. The DGE is composed of the following modules: