Le attuali SPECT per arrivare a risoluzioni spinte, utilizzano una tecnologia multi-pinholes che necessita di numerosi trattamenti dei dati per limitare gli effetti di distorsione sulle immagini. La nuova SSR-SPECT, al contrario, utilizza un collimatore a fori paralleli quindi non necessita di rielaborazioni numeriche dei dati per ottenere informazioni corrette sulle immagini, pur garantendo risoluzioni spaziali prossime a quelle dei pinholes mediante l'acquisizione di sequenze di immagini tra loro traslate.
Tecnologie
In questa sezione è possibile visionare, anche attraverso ricerche mirate, le tecnologie presenti nel Database di PROMO-TT. Per maggiori informazioni sulle tecnologie e per contattare i Team di Ricerca del CNR che le hanno sviluppate è necessario rivolgersi al Project Manager (vedi i riferimenti in fondo a ogni scheda).
Risultati: da 1 a 15 di 15
I batteriofagi filamentosi per dimensione, biodistribuzione in vivo e facilità di ingegnerizzazione, sono considerati nanoparticelle naturali. La tecnologia sviluppata permette la costruzione di fagi veicolanti antigeni proteici e lipidi immunomodulanti. Grazie all’alto contenuto di residui idrofobici, le proteine del capside fagico hanno alta affinità di legame ai lipidi, permettendo la coniugazione di lipidi immunostimolatori.
La presente invenzione ha per obiettivo un dispositivo scintigrafico modulare, ad elevata risoluzione spaziale, in grado di realizzare aree di indagine di varie forme e dimensioni, di forma compatta e di essere utilizzato in diverse tipologie di applicazioni.
La presente invenzione concerne un sistema di analisi chimica portatile in grado di identificare sostanze chimiche in tracce (concentrazioni sub-ppm), anche in presenza di altre sostanze interferenti grazie alla selettività bi-dimensionale ottenuta dalla combinazione tra la tecnica di separazione Gas Cromatografica (GC) e la tecnica di analisi infrarosso fotoacustica (PA), in particolare ma non esclusivamente nella sua implementazione denominata “Quartz Enhanced Photo Acoustic Spectroscopy” (QEPAS).
Il conteggio di fotone singolo correlato nel tempo (TCSPC) è considerato il metodo "gold-standard" per le misure di vita media di fluorescenza. Tuttavia, TCSPC richiede l'utilizzo di rivelatori altamente sensibili, non adatti a misurazioni in condizioni di luce ambiente intensa, impedendone così l’utilizzo nelle applicazioni cliniche. L'invenzione qui descritta risolve questo problema sincronizzando la rivelazione della fluorescenza con una sorgente di luce esterna, in modo che i fotoni di fluorescenza e della luce di illuminazione siano temporalmente separati.
Lo sviluppo di nuovi materiali con emissione nel vicino infrarosso (NIR, 700-1000 nm) rappresenta un importante ed indispensabile obbiettivo nel progresso tecnologico di componenti attivi per dispositivi OLED (anche flessibili), nei sistemi di sorveglianza, per la guida autonoma, nei sensori per visione notturna, nelle telecomunicazioni in fibra ottica e nei sistemi medicali. Per tutti questi campi manca ancora una tecnologia elettronica di riferimento OLED-NIR.
Presso IFN-CNR, in collaborazione con Politecnico di Milano-dipartimento di Fisica, abbiamo sviluppato approcci di microscopia Raman compatibili con lo studio e la caratterizzazione di campioni di interesse biologico e industriale. In dettaglio la nostra struttura ospita un microscopio Raman spontaneo confocale autocostruito e con le seguenti caratteristiche: due laser di eccitazione (660nm e 785nm), microscopio invertito (Olympus IX-73) e accoppiato a spettrometro/CCD Princeton.
Recentemente, le vescicole si sono dimostrate uno strumento prezioso e innovativo contro le malattie neurodegenerative. In particolare, nel settore Biotech ci si aspetta una sempre più profonda penetrazione di nuovi modelli di cura e farmaci biologici basati su terapie cellulari, subcellulari e vescicole
Il brevetto si basa sulla produzione di nanovescicole a base di mielina (MyVes) prodotte mediante microfluidica a partire dalla mielina estratta da tessuto cerebrale. Tali vescicole trovano due grandi campi di applicazioni come potenziali farmaci o come integratori/nutraceutici.
Attualmente, i liposomi (vescicole sintetizzate artificialmente) sono utilizzati come vettori di numerose molecole nelle industrie cosmetiche e farmaceutiche. In ambito clinico, ad esempio, vengono impiegati per incapsulare antibiotici, proteine, materiale genetico, vitamine e farmaci antitumorali.
Con l'avvento di agenti senolitici in grado di rimuovere selettivamente le cellule senescenti nei tessuti “invecchiati”, la percezione delle malattie associate all'età è cambiata dall'essere un fenomeno inevitabile a un fenomeno prevenibile della vita umana. La presente invenzione si inserisce in questa tematica di ricerca con la identificazione di molecole a potenziale attività pro-apoptotica, ovvero ad attività senolitica. L’approccio computazionale prescelto si basa sulla integrazione di approcci di virtual screening ligand-based e structure-based.
La presente invenzione ha per oggetto una gamma camera per uso intracavitario che trova ampia applicazione nel campo della chirurgia radioguidata (intraoperatoria e laparoscopica e robotica assistita) per la localizzazione di linfonodi e tumori e/o di altre patologie. Compito tecnico della presente invenzione risulta dunque essere quello di mettere a disposizione una gamma camera intracavitaria in grado di superare gli inconvenienti dell’attuale arte nota.
Presentiamo una tecnologia per l’isolamento multiscala (analitica-di laboratorio-di produzione) di Vescicole Extracellulari (VE), che supera le limitazioni dei metodi attualmente disponibili.
La NIRS è una tecnica non invasiva per l’imaging della corteccia cerebrale umana basata sullo studio di luce NIR emessa da opportuni sorgenti ottiche poste sulla testa del paziente e retrodiffusa in superficie dopo il passaggio attraverso i tessuti cerebrali. La NIRS misura la percentuale di emoglobina ossigenata e ridotta presente nel sangue e permette dunque l’imaging funzionale della corteccia cerebrale in tempo reale, anche in modalità tomografica (Diffuse Optical Tomography – DOT).
VES4YOU, una nuova bio-nanotecnologia: le vescicole extracellulari da una fonte naturale sostenibile
Nel campo della medicina di precisione e rigenerativa, nelle terapie mirate (ad es. terapie antitumorali e antimicrobiche), e nelle applicazioni nei settori cosmetico e nutraceutico è importante disporre di sistemi di nano-delivery sempre più sicuri, efficienti e specifici.
Le vescicole extracellulari prodotte da cellule di teratocarcinoma sono state isolate e caratterizzate. Saggi funzionali su colture cellulari di glioblastoma (GBM) hanno evidenziato l’effetto inibitorio di tali vescicole sulla migrazione delle cellule tumorali, senza indurre effetti indesiderati come l’incremento della proliferazione cellulare o resistenza al chemioterapico.